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ABSTRACT

The type of stratified flow suggested by the Kantha Phillips and Azad experiment is examined
analytically and shown to be a self-similar, turbulent flow which includes the well-documented flat-
plate, turbulent boundary-layer case. Some relevant second-moment turbulent closure model calcula-

tions are compared with the KPA data.

1. Introduction

The purpose of this note is fourfold: (i) to provide
theoretical support for Wyatt’s (1978b) observa-
tion that the two-layer experiment by Kantha et al.
(1977) appears to be a self-similar problem (it is so
in the ideal limit of zero curvature and infinite
aspect ratio); (ii) to point out the fact that the well-
established, neutral turbulent layer over a flat wall
is the zero Richardson number, limiting case for
these flows which one might term, stratified, turbu-
lent Raleigh flows; (iii) to present model simula-
tions for this problem which embody (i) and (ii); and
(iv) to compare the model. results with KPA data
even though those data apparently include side wall
and curvature effects (Price, 1979; Thompson, 1978;
Wyatt and Kantha 1978a) which are not simulated
by the model. Furthermore, the model assumes a

solid wall boundary condition whereas the experi-.

ments used a porous screen.

Additionally, we have run the model including the
Coriolis term and note that profiles and entrain-
ment rates are greatly altered.

2. The basic equations

The equations and boundary conditions for a two-
layered horizontally homogeneous flow are
oUu o ( BU)

== 1
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! This work was supported under NSF Grant OCE-7420693
and AFOSR Grant 75-2756.

0022-3670/80/030455-06$05.50
© 1980 American Meteorological Society

op 0 dp
- 2k, -2, 2)
ot Bz( # 6!) (
oU
Ky— ~ut, z—-0
9z
U~0, z—> —x, (3a,b)
KH‘%B" ~VU, Z— 0; P~ Pxy, Z > X, (4a’b)
z

where U and p are the mean velocity and density;
u, is the friction velocity and p., the constant density
in the lower layer.

3. Similarity equations

We now assume

U JE—
Z = F(n); = —_A(t) , (5a,b)
P~ P
-7 = G(n), 6
20 (n (6)

where A and p are time-dependent length and
density scale factors. We also assume

KM = “7A¢M(7), Rl)’ (7)
Ky = u;:Ady(n, Ri), (®
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is the local gradient Richardson number. It is be-
lieved that most closure models, some simple, some

complex, reduce to (7) and (8) if the conditions for

similarity exist in the form of (5a,b) and (6).

In the present development, we let u, = constant.
However, the analysis can be easily generalized for
cases where u, « t* for arbitrary constant n.

If we now use (5a,b), (6), (7) and (8) in (1)-(4)
we obtain

!

A
(¢uF') + —nF' =0,

(10)
A p' A
@Gy + —m6' - £ 2G=0,
u, p U,
(bMF’ -~ 1, n - 0; F - 0, n - —®, (123,b)
duG' ~1, n—>0;, G~0, n— -, (13a,b)
. .G
Ri = Rlo '(—I-:-,)—z , (143)
where
A
Ri, = - 22P (14b)
p0u1'2

is the bulk Richardson number. Primes represent
differentiation with respect to n or ¢ according to
variable argument as defined in (5a,b) and (6).
Now for similarity solutions to exist, A'/u, and
Ap'/(pu,) must be invariant. Furthermore, these
parameters are not independent since, on integrating
(11) from 1 = 0 to —~, using (13a,b), we obtain

(15)
which integrates to Ap = constant. Therefore, the

condition of similarity is that A'/u, = ~Ap'/(u,p)
= constant. Integrating (10) from — to 0 we obtain

0 -1
A'u, = [ J Fdn] .

Following Clauser (1954), we may now define

A Er -[idz, (16)
o Uy
in which case
0
J Fdn =1
and
AI
—=1. an
U
We further define p so that
0
J Gdn =1
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and

0
8p==| 0= pde (8)
Whether or not the flow is similar, Ap is conserved
and equal to hy8p in the case where the flow is
initialized with two constant .density layers separated
by a density jump 8p at z = —h,. Note, then, that
Riy = —ghy8pl(pou,?).

Thus, the stratified turbulent Raleigh flow as
approximated by the experiments of Kantha et al.
(1977) is self-similar. This is in contrast to the Kato
and Phillips (1969) experiments where it may be
shown that similarity solutions do not exist; i.e.,
Ulu, = F(n,t}). However, that problem (initial
0p/dz = constant) may be rescaled so that only one
parameter-free problem exists (Mellor and Durbin,
1975).

4. Law of the wall
Next to a solid wall it is known that
by ~ k|n|; m—o.
Thus, (12a) yields
U

——EF~-1-1n|n[ +A; n—0,
U, k

(19)

where for the similar, turbulent Raleigh problem
A = A(Riy).
Eq. (19) is the inner asymptote of the outer func-
tion F(7). On the other hand,
U,-U 1 |z| z
—_—~-ln-—; ——
u, k Zo Zo

—00

(20)

is the outer asymptote of the inner law of the wall
function. Here U, is the wall velocity and z, the
roughness height, whereas for a smooth wall zyu./v
= (0.14. If we add (19) and (20), we obtain

Uy 29

1
=-InZ2 + A. 21
Py (21

U

5. The neutral turbulent Rayleigh flow

We deem it worthwhile to point out that the
limiting case of zero Richardson number, of course,

_ is the turbulent analogue of the Rayleigh problem

and, as shown by Mellor and Gibson (1966), Crow
(1968) and Mellor (1972), corresponds exactly to
the infinite Reynolds number limit [where the
operator, Ud( )ox + Wa( )/dz - U,0( )dx] of
turbulent flat plate flow after a Gallilean trans-
formation and differs in very small quantitative
detail from well-documented flat plate data for large
but finite Reynolds number. In fact, plotting flat
plate data in so-called velocity defect form is sup-
posed to remove all Reynolds number dependence.
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The boundary-layer data from Klebanoff (1955)
are reproduced in Fig. 1. Although, in this neutral
case the mixed-layer depth is less well defined, we
deduce from Klebanoff’s data that the entrainment
rate E based on the velocity or shear stress
diminishing to 1% of its maximum value is ~0.25.

6. Model simulations

The model simulations include the numerical
solutions of Egs. (1), (2), (3a,b) and (4a,b) and equa-
tions for the turbulent energy and the turbulent
length scale. The model further provides diagnostic
equations for mixing coefficients which are de-
pendent on the turbulent energy, length scale and
velocity and buoyancy gradients. A simulation for
Ri, = 0 produced the calculated results in Fig. 1,
as previously described by Mellor and Yamada
(1977). The most recent and directly applicable
description of the model (the ‘‘level two and a
half*’ version) has been provided by Blumberg and
Mellor (1979).

In the present calculations, the molecular values

of viscosity and salt diffusivity were added to Ky,
and K, respectively. The vertical and temporal
resolution were sufficiently fine so that halving
them again produced negligible effect. The initial
conditions for the calculations were zero velocity
and two constant density layers separated by a
density jump 8p at z = —h,. A surface shear stress
was then impulsively applied. Initially, the flow is
non-similar. A particular simulation for Ri, = 100 is
represented in Figs. 2 and 3. It will be seen that
similarly has very nearly been attained when
u,tlhy = 50,

Assuming that entrainment depth ~ corresponds
to (p. — p)/p = 0.01, then, in Fig. 2 we obtain
h/A = 0.054 from which one can obtain the entrain-
ment rate according to

E=_2t_22_" (22)

In Fig. 3 a detailed entrainment history, h/h, vs
u.tlhg, is shown and confirms the establishment of
similarity at u.t/hy, = 50.

At this point it is convenient to note that the
mode! currently has no transition mechanism built
into it so that a small initial ‘‘seeding”” of K, is
prescribed near the surface. However, after u,t/h,
= 20, it is believed that the generated turbulence
field is independent of the initial conditions and the
subsequent development toward similarity is a valid
simulation of that process.

In Fig. 4 the KPA data are plotted together with
the results of model runs for a range of Ri, values.
The data point at Ri; = 01is very reliable since there
is a great deal of data to corroborate Klebanoff’s
results.
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FiG. 1. Turbulent flat plate data by Klebanoff (1955). The
Reynolds number is Uyh/v = 7.4 x 104, u /U = 0.0377 and
h/A = 0.25. The continuous curves are model results from
Mellor and Yamada (1977). Two outer boundary conditions

for the turbulent length scale / produce almost identical results.

The dashed line is a simple theory by Price (1979)
based on a constant bulk Froude number which, by
the way, provided a simple explanation for the
difference in entrainment rates obtained in these
experiments and in those of Kato and Phillips (1969).
Price also attributes the experimental decrease in E
for Ri, = 200 to the effects of side wall friction (see
also Thompson, 1978; Wyatt and Kantha, 1978a).
For Ri, < 100, the fact that the model predicts
lower values of E than the experimental data (which,
when extrapolated to Ri, = 0, would appear to be
larger than the turbulent flat plate data) is not sur-
prising in view of the additional effects of curvature
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F1G. 2. Model profiles of mean velocity, (twice the) Kinetic energy and
density in similarity form for Ri, = 100.

and wall porosity (Wyatt and Kantha,
which are not simulated by the model.
Now, according to (21), the wall or, in the KPA
case, the screen velocity will decrease as A in-
creases for constant u, and z,. This is in accordance
with observation as reported by KPA. The predicted
rate of decrease is ~40% too low but this discrepancy
is reduced to about 20% if the computed non-
similar behavior (for small tlme) is used in conjunc-
tion with (20). However, in view of the dissimilarities

1978a)

AL

F1G. 3. Calculated variation in mixed layer depth
versus time for Ri, = 100.

in the model and experimental flows, particularly
near the screen, agreement or disagreement may
be coincidental.

We note finally that the shape of the density pro-
files are quite similar to those sketched by Wyatt
(1978b) for conductivity probe traverses taken in
the same tank and under the same conditions as
the KPA experiments [see, also, Kantha (1978) for
additional density profile data]. From these observa-
tions, shé anticipated that the flow appeared to be
self 51m11ar

7. Effect of the Coriolis parameter

Wyatt also drew attention to the fact that the
laboratory dens:ty profiles are dissimilar to field
observations in that the latter, generally, are nearly
constant in the surface layer and then change rather
abruptly at the interface. To explore the simplest
cause of these differences we have inserted the
Coriolis term in the equations of motion which, in
place of (1), becomes

oU . i} oU

e I = o— K —— 3

ot t#u az( M 62)
where we use the complex velocity, U = U + iV.
Our first calculation with an f, chosen rather
arbitrarily, resulted in fhy/u, = 0.37. The near
steady state? results for Ri, = 100 and when

(23)

2 If one starts up the calculation with an impulsive wind
stress, inertial oscillations result and persist indefinitely (Mellor
and Durbin, 1975). Alternately, double the initial wind stress at
t = 7w/f and the flow approaches near steady state. The later
strategy was used for the calculations of Fig. 5.
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Fic. 4. The entrainment data of Kantha, Phillips and Azad (1977). The large
circular data point at Ri, = 0 is the turbuient flat plate value of entrainment.
The dashed line is the Ri,'2 theory of Price (1979) when side-wall friction
is neglected. The solid line results from model calculations.

u.t/hy = 100 are shown in Fig. S as solid lines. For
comparison a neutral case, Ri, = 0, is shown as
dashed lines in Fig. 5.

It may be remarked that, using a prognostic,
turbulent length scale equation (with constants
determined from channel flow and boundary-layer
flow), we now obtain thicker, neutral Ekman layers
than when we used a diagnostic, algebraic, length-
scale equation with a constant determined by
guessing at a neutral Ekman layer height (~0.3u./f).

We believe that available evidence suggests that
the new result is to be preferred, but neutral or near-
neutral profile data as summarized by Caldwell
et al. (1972) and McPhee and Smith (1976) are
not conclusive. In fact, many of the profiles do not
satisfy a property of (23) that the integrals of U/u,
and V/u, with respect zf/u, be zero and unity,
respectively.

The addition of the Coriolis parameter for the
two-layer, stratified case greatly reduces the entrain-

lp -pl/p

2

)

T

F1G. 5. Mean velocity and density profiles with addition of the Coriolis term to
the momentum equation. The solid lines correspond to fh,/u, = 0.37, Ri, = 100;
we obtain £ = 0.01. The dashed lines are the stationary, neutral Ekman layer.
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ment rate from E = 0.054 to E = 0.01, the latter
being a rough estimate since the flow is no longer
similar, E is not constant in time and (22) no longer
applies. The decrease in E, of course, is due to the
fact that the stress divergence is nearly balanced by
the Coriolis acceleration term in (23).

Finally, it seems safe to conclude that the differ-
ence in density profiles for f=0 and f+ 0
illustrated in Figs. 2 and 5 is primarily and simply re-
lated to the resulting decrease in E in the latter case,
thereby allowing the mixed layer to mix more
thoroughly.
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